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Abstract

Boolean Satisfiability is a ubiquitous modeling tool in
Electronic Design Automation, It finds application in test
pattern generation, delay-fault testing, combinational
equivalence checking and cint delay computation,
among many other pblems. Mogover Boolean Satisfi-
ability is in the coe of algorithms for solving Binate Cov-
ering Pmoblems. This paper describes how Boolean
Satisfiability algorithms can take cinit structue into
account when solving instances derivednfr combina-
tional circuits. Potential advantages include smaller run
times, the utilization of daiuit-specific seah pruning
techniques, avoiding the overspecificatiorolpem that
characterizes Boolean Satisfiability testers, aaducing
the time for iteratively generating instances offSfom
circuits. The experimentalesults obtained on several
benchmark examples in two diffat poblem domains
display dramatic eductions in the run times of the algo-
rithms, and povide clear evidence that computed solu-
tions can have significantly less specified variable
assignments than those obtained with commoh &do-
rithms.

1. Intr oduction

Boolean Satisfiability (SR is intrinsic to many prob-
lems in Electronic Design Automation (EDA). Originally
motivated by the work of .TLarrabee in test pattern
generatiorj15], SAT models and techniques have since
been applied to delay-fault testing, equivalence checking,
circuit delay computation, logic synthesis and functional
vector generation [8], among other applications. (See [5,
7, 15, 17, 18, 20] for an overview of applications offSA
to EDA.) Moreover SAT can also play a central role in
solving instances of binate covering problems (BCP) [6, 9,
10, 11, 13], in particular for those in which the constraints
are hard to satisfye.g. in computing minimum size test
patternd10]. SAT also plays a key role in other domains,
including for example Artificial Intelligenci8, 21] and
Operations Resear¢B]. Recent years have seen dramatic
improvements in SA algorithms, which have been thor-
oughly validated in dférent application areas [3, 16, 21].

With respect to applications of $An EDA, in most
cases the original problem formulation starts from a circuit
description, for which a given (circuit) property needs to
be validated for at least one primary input vecfdne
resulting circuit formulation, which may only be implicitly
specified, is then mapped into an instance of, #Amost
cases using Conjunctive Normal Form (CNF) formulas.

The utilization of CNF models and $A&lgorithms has
important advantages:

1. Existing, and extensively validated BAlgorithms, can
be used instead of dedicated algorithms.

2. New improvements and new $Aalgorithms can be
easily applied to each gt application.

In contrast, the utilization of CNF formulas and associ-
ated SA algorithms is also characterized by several draw-
backs:

1. As observed in [20], the structural information of the
circuit, often of crucial importance, is lost.

2. In many EDA problems, a Ilge number of instances of
SAT has to be solved for each circuit. Hence, mapping a
given problem description into SAcan represent a sig-
nificant percentage of the overall running time [15].

3. Computed input patterns are in general overspecified.
Overspecification can be a serious drawback ferdint
applications, including circuit testing and binate con-
straint solving.

With the purpose of addressing these problems, in [20]
a new dynamic data structure, i.e. an extended implication
graph, is proposed for solving instances off S\ combi-
national circuits. Despite the promising results of [20], uti-
lizing a new data structure requires dedicated algorithms.
Hence new search pruning techniques, developed for
example in the context of JAalgorithms, will have to be
adapted to the circuit graph data structure.

In this paper we show how to utilize structural informa-
tion in SAT algorithms. ® a generic SA algorithm we
add a layer that maintains circuit-related information, e.qg.
fanin/fanout information as well as value justification rela-
tions. The proposed approach allows using any &go-
rithm to which this layer can be added. The main
advantages of the proposed approach is that some of the
previously mentioned drawbacks, i.e. inaccessibility to
structural information and overspecification of input pat-
terns, are eliminated. The main contribution over the work
of [20] is that data structures used forTSAeed not be
modified, and so existing algorithmic solutions forTSA
can naturally be augmented with the proposed layer for
handling structural information. Moreoyehe approach
proposed in this paper is significantly simpler than the one
in [20], since only minor modifications to $Algorithms
are required.

The paper is granized as follows. Section 2 introduces
basic definitions associated with BAand combinational
circuits. Next we briefly survey SAalgorithms, giving
particular emphasis to those that have been shown to be
effective in solving EDA problems. Afterwards, in Section
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Figure 1: Example circuit and CNF formula

4, we detail the proposed approach for taking into consid-
eration structural information while solving BASection

5 analyzes preliminary results on two EDA applications.
The paper concludes in Section 6 by reviewing the contri-
butions and providing some perspective on future research
work.

2. Definitions

The CNF formula of a combinational circuit is the con-
junction of the CNF formulas for each gate output, where
the CNF formula of each gate denotes the valid input-out-
put assignments to the gate. An example of a circuit, asso-
ciated CNF formula and the specification of an objective is
shown in Figure 1. (The derivation of the CNF formulas
for simple gates can be found for example in [15,)17].
we view a CNF formula for a gate as a set of clauses, the
CNF formula¢ for the circuit is defined by the set union
(or conjunction) of the CNF formulas of each gate. Hence,
given a combinational circuit it is straightforward to create
the CNF formula for the circuit as well as the CNF for
proving a given property of the circuit.

SAT algorithms operate on CNF formulas, and conse-
guently can readily be applied to solving instances af SA
associated with combinational circuits. Examples include
the CNF formulas for test pattern generation [15] and cir-
cuit delay computation expressions [18].

3. Boolean Satisfiability Algorithms

The overall aganization of a generic SAalgorithm is
shown in Figure 2This generic SR algorithm captures
the oganization of several of the most competitive
algorithmg[3, 16, 21].

The algorithm conducts a search through the space of
the possible assignments to the problem instance vari-
ables. At each stage of the search, a variable assignment i
selected with theeci de() function. A decision leval is
associated with each selection of an assignment. Implied
necessary assignments are identified withDésduce()
function, which in most cases corresponds to straightfor-
ward derivation of implicationg, 16]. Whenever a clause

track

Current decision level d
Backtrack deci sion | evel
SATI SFI ABLE or UNSATI SFI ABLE

/I I nput arg:

/I Qut put arg:
/I Return val ue:
1

SAT (d, &B)

{

if (Decide (d) != DECI SION)
return SATI SFI ABLE;
while ( TRUE) {
if (Deduce (d) != CONFLICT) {
if (SAT (d + 1, B) SATI SFI ABLE)
return SATI SFI ABLE;
elseif (B '=d || d==0)
Erase (d); return UNSATI SFl ABLE;

}
if (Diagnose (d, PB) == CONFLICT) {
return UNSATI SFI ABLE;

}

Figure 2: Generic backtrack search SA T algorithm

becomes unsatisfied tbeduce() function returns a con-

flict indication which is then analyzed using tbieag-

nose() function. The diagnosis of a given conflict returns

a backtracking decision lev@, which denotes the deci-

sion level to which the search process is required to back-

to. The Erase() function clears implied
assignments that result from each assignment selection.

Different oganizations of SR algorithms can be modeled

by this generic algorithm. Currentlgll of the most di

cient SAT algorithms [3, 16, 21] are characterized by sev-

eral of the following key properties:

1. The analysis of conflicts can be used for implementing
Non-chonological Backtracking search strategies.
Hence, assignment selections deemed irrelevant can be
skipped over during the search [3, 16, 21].

2. The analysis of conflicts can also be used for identifying
and recording new implicates of the Boolean function
associated with the CNF formul&lause Recaling
plays a key role in recent $Aalgorithms, but in most
cases lage recorded clauses are eventually deleted [3,
16].

. Other techniques have been developBelevance-
Based Learning3] extends the life-span of kge
recorded clauses that will eventually be delet@oin-
flict-Induced Necessary Assignmedis] denote
assignments to variables which are necessary for pre-
venting a given conflict from occurring again during the
search.

Before running the SR algorithm, diferent forms of
preprocessing can be applied [16]. This in general is
denoted by #&r epr ocess() function.

4. Satisfiability in Combinational Cir cuits

4.1. Additional Data Structur es

Let C_ denote a property of a combinational ciraDit
which is'to be satisfied to an objective vatuand which

Tan be described by a given set of clauses. This satisfiabil-

ity problem is denoted byC , oC and can be mapped into
an instance of SA ¢ . The f%llowing information is asso-
ciated with each variabbeof ¢, that also represents a cir-
cuit nodex of C:



Gate 0.(%) 0.9 adapted so that the information regarding justification can
0 1 be properly maintained. Moreoyehe fanin information
AND(Wy, ..., W) 1 [FIX) can be used for implementing structure-based heuristic
decision making procedures, esimple or multiple back-
NANDW,, ... W) | IFI(3)I 1 tracing [1]. With respect to the algorithm of Figure 2,
NOR(W,, ..., W) 1| |FIX)| functions Deduce() and Di agnose() have to invoke
dedicated procedures for updating node justification infor-
XORMWy, W) [ IFIM | IFI) mation. Additionally theDeci de() function now tests for
Table 1: Threshold values on assigned inputs satisfiability by checking for an empty justification fron-
tier instead of checking whether all clauses are satisfied.
These are the only required modifications to the general

X | X| X| X

Gate w; =0 w; =1 SAT algorithm. In addition, th@eci de() function can
x = AND(Wy, ..., W,) 1o(X) 1, () opt!onally be .modified to perfqrm backtra_cing given the
- fanin information associated with each variable.
x = NAND(W,, ..., W) 1,09 o) We should note that the data structures described above
x = NOR(W, ..., W) (%) 1o(¥) operate in much the same way as justification works in
combinational circuits [1]. The main &fence is that in
X = XOR(Wy, ..., W) | 15(x) andi3(X) | 16(X) andi,(X) our approach justification and value consistency are for-

mally dissociated; value consisteneynd hence conflicts,
are handled by the SAalgorithm, and justification by the
new added layer

Table 2: Justification counters associated with gate inputs

1. FI(x) denotes the fanin nodes»of

2. FO(X) denotes the set of fanout nodex.of ; ; it

3. u,(x) denotes the threshold value on the number of suit- 4.3. Handling Special Implications
able assigned inputs (of) that are necessary for Besides taking structural information into account, fur-
justifying valuev on nodex. ther improvements are possible when th& &lgorithm is

4. 1 (X) denotes the actual counter of assigned inputg (of  intended to prove or disprove a given circuit propextyd
that are involved in justifying the valweon nodex. when several constraints are formulated as logical impli-
Note that the value assigned to each variablis cations. This technique can be viewed as a generalization

denoted by(x) . Moreover observe that each circuit node of syntactic satisfiability17]. It is plain that for a combi-

X, with assigned value;, becomes justified whenever national circuit we can find consistent assignments. Syn-

() =0 (X). tactic satisfiability hinges on this fact to allow the search
Tablel contains a few examples of threshold values on algorithm to stop the search when clauses not yet satisfied

the number of assigned inputs required for justifying a are guaranteed to have a satisfying assignment, e.g. when

given node. For example, for an AND gate at least one no clause of the original circuit CNF formula has literals

input assigned value 0 justifies the assignment of value 0 assigned value 0.

to x, whereas for value 1 all inputs must be assigned value Let us suppose that when proving a given circuit prop-

1. Hence,uy(x) = 1 and v,(x) = [FI(X)|. As another erty we have several implications of the foym. § w,,

example, observe that for an XOR gate justification of any where variabley is not associated with one of tfe circuit

assigned value requires assignments to all gate inputs;yariables, being used instead for describing thgetatir-

henceu,(x) = v4(X) = [FI(x)|. For other simple gates ¢t property This implication is satisfied ify = 0.

this information can also be easily derived, and in all cases Hence, only whery = 1 is a necessary assignment, do

we haveu(x), v.(X) O {1, [FIX)|} . ' '
ovZr 1 : ; we need to require that the equivalent clausal form
For any simpl with Wi n i - : i
or any simple gate with outpul we can associate wiH be satisfied. W refer to this conditional con-

with each fanin node the counters that must be updated E§/+ i o e X e
as the result of assigning a valuéo w. For example, for _S|de ion of clauses @mplicational syntactic satisfiabil-
an AND gate an assignment of 0 to a fanin mnedacre- ity.

mentsi,(X) by 1, and an assignment of 1 to fanin nade "

incremgnt511(x) by 1. These relations are illustrated in 4-4. Additional Advantages

Table2 for a few example gates. Note that for the XOR ~ For some EDA problems it is necessary to repeatedly
gates, both counters are updated when an input nodespjve instances of SAPervasive clausesere introduced
becomes assigned. _ _ o in [17] for denoting a clause that is recorded while solving
_As with standard search algorithms in combinational an instance of SR and which can be used subsequently
circuits [1], ajustification fontier is maintained, which —for solving other instances of $Ahat are associated with
denotes the sets of variables/nodes that require justifica-the same circuit. For example, pervasive clauses may be
tion. Observe that the condition that indicates the need for yseq in test pattern generation (TPG) for denoting value
node justification is(v(x) = v) O (1,(x) <v (X)), where relations between circuit nodes.
vi{0,1}. With the structural information described in this sec-
P : tion, we can also characterize which variables can yield
4.2. Modifications to the SAT Algorithm pervasive clauses and which cannot. Hence, while solving
Given the previous definitions, a BAlgorithm can be a given EDA problem, the SAalgorithm can identify per-
vasive clauses, which it can subsequently re-utilize while



Cireuit | #P1 | #P0 | #G [— T#';G — LTPCDCA Circuit #PI #PO #G LTP A
csa.32.16 65 33 170 69 66
C432 36] 7| 1600 524 520 417 17 <328 65 33 180 73 38
C499 41| 32 202 758 750 gl 1] n csa32.4 65 33 200 a1l 20
€880 60 26| 383 942 942 of 24 24 csa.64.16 129 5 340 137 20
C1355 41| 32| 546] 1574 1566 8| 24 24 p—yy 129 o5 3260 125 20
C1908 33| 25| 880 1879 1879 of 40 37 sa 644 129 &5 200 161 6
C2670 233 140] 1193 2747 263 117 32| 30 csa.128.10 557 129 680 >73 78
C3540 50 22| 1669 342d 3291 137 47| 46 csa.128.8 257 129 720 289 62
C5315 178] 1232307 5350 5291 59| 49 47 csa.128.4 2571 129 300 321 78
C6288 32| 32| 240§ 7744 771 34] 124 123 — :
C7552 2071 108 3512 7550 7419 131 43 42 Table 5: Statistics for carry-skip adders
Table 3: Statistics for ISCAS'85 circuits ber of non-chronological backtracks, the average percent-
age of assigned variables over all solved instances and the
Circuit| CNF()—— #N‘SEA;Z sie 78 #ﬁgﬁi e, SAT search time. In this experiment, each fault was indi-
e R Y B T G R A BT B B RER vidually tageted, i.e. fault simulation and hence fault
: : : dropping were not applied. Moreoyeeither GRASP nor
€499 | 51| 1254 11101100 1304 24 24 82 3.0 CGRASP abort any fault. As can be readily concluded, the
C880 | 489 2690 968 99) 3023 55 31j 33 3.13 search times become drastically reduced when structural
C1355 27.92 5464 644100 77.383 73 40| 89 18.87 information is taken into account, and a justification fron-
C190§ 27.56 3509 2224100 108.09 1353 946 80| 33.57 tier is used for SA purposes. Indeed, for some of the
C2670 13.97 12949 6997 85 437.171 5132 129§ 26| 34.20 benchmark circuits the search times can be reduced by
C3540 66.40 3304912564 99| 839.04 692 199 66| 83.60 almost two orders of magnitude.
C5315 32.79 5081 313§ 98 2727.6§ 1671 631 22| 80.24 Besides the reduction in CPU times from GRASP to
C6288362.00149374 5360100 4215.3316314 398 77|467.23 CGRASR we can also observe similar reductions in the
C7552 65.1§ 7095835322 9812641.3% 4811 1704 44{247.95 total number of backtracks. Nevertheless, the pruning

techniques of GRASP are still used in CGRAS® the
number of non-chronological backtracks clearly illus-
solving instances that are associated with the same circuit. trates. MoreovelCGRASP computes test patterns that are
significantly less specified than the test patterns computed
5. Experimental Results by GRASP (see able4). Hence, by taking structural
information into account we canfe€tively handle the
In this section we evaluate the practical usefulness of overspecification problem, and compute test patterns that
the circuit structure-aware FAalgorithm described in can be as specified as those obtained with purely structural
Section 4. For this purpose, we used a state of the art pub-methods [1]. Given the experimental analysig[161,
lic-domain SA algorithm, GRASH16], and built on top where SA-based APG algorithms are shown to be com-
of this algorithm a new SRalgorithm that takes structural  petitive with structural APG methods, and the above
information into account, CGRASHwo EDA applica- experimental results, we hypothesize that further improve-
tions are considered for comparing GRASP and CGRASP ments to SA-based APG algorithms are possible.
namely test pattern generation [15, 17] and circuit delay o ]
computation (CDC) [718]. Statistics for the ISCAS'85 ~ 5.2. Circuit Delay Computation
benchmark circuits [4], regarding TPG and circuit delay
computation, are shown irafile3. #PIl, #PO, #G, #FD,
#R, LPT andA denote, respectivelthe number of pri-
mary inputs, the number of primary outputs, the number of
gates, the number of stuck-at faults, the number of detect-
able faults, the number of redundant faults, the longest
topological delay and the critical circuit delay under float-
ing-mode operatiofr]. All the experimental results

shown below were obtained on a P-Il 266 MHz Linux o ,qed once more, utilizing to the structural information of
workstation with 128 MByte of physical memory the circuit proves crucial in reducing the CPU times spent
5.1. Test Pattern Generation searching. Similarly to TPG, the reduction in run times
can be dramatic, in some cases two orders of magnitude
The first experiment consists in evaluating CGRASP reductions are observed. Once more, despite the very sig-
for TPG, using a simplified version of the mode[dif]. nificant reductions in the run times, we can still observe
For this purpose, both GRASP and CGRASP were run on the pruning techniques of GRASP being used. As shown,
the ISCAS’85 benchmark circuits. The results are shown the number of non-chronological backtracks still repre-
in Table4. For each algorithm, CNF(s), #B, #NCB, %A sents a significant percentage of the overall number of
and SA(s) denote, respectively the total CNF formula
build time, the total number of backtracks, the total num- 1. see HbleS for statistics regarding these circuits.

Table 4: Results for test pattern generation

Another potential application is SAased circuit
delay computation [18, 12]. Experimental results compar-
ing GRASP and CGRASP for circuit delay computation
are shown in @ble6. For these experiments, the model of
[18, 12] is used, and unit gate delays are assumed. In addi-
tion to the ISCAS’85 circuits, we generated several carry-
skip addery to evaluate how each algorithm performs
with increasing circuit size and complexiys can be con-




GRASP CGRASP Future research work will necessary address this issue.

Cireuit | CNFSF 5~ TuNCB | SAT(s) | #B | #NCB | SATE) Other future improvements involve incorporating addi-
C432 0.01 66 3 0.09 0 ol o0.01 tional structural pruning techniques, specific to combina-
C499 0.01 0 0 0.51 0 o oo1 tional circuits, with the objective of further simplifying
880 001 20 12 0.30 0 o o0.02 solving SA' in circuits. Examples include application-spe-
C1355 0.05 154d 397 9.03 1 1 013 cific pruning techniques, e.g. unique sensitization
C1908 012 93 67 930 56 42 131 points[15], that can reduce the amount of search for each
C2670 on| 558 231 2189 422 177 217 application.
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