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Abstract

This paper describes, in a manner that is meant to be amenable to both math-
ematicians and engineers, the accurate optimization of transistor sizes on a
static timing basis. Delays of individual gates (and gradients thereof) are ob-
tained by transient (i.e. time-domain) simulation rather than simplified Elmore
or analytical delay models. Slews (rise/fall times)! and their effects on delay
are correctly taken into account. The optimization problem is stated in a form
amenable to general-purpose nonlinear optimization. However, the size and
inherent degeneracy of the resulting optimization problem make it difficult to
solve. By considering the structure of the problem, optimality conditions are
derived and conditions can be exploited to carry out the tuning more effectively
and efficiently. Numerical results from the optimization of high-performance
microprocessor circuits are presented. Further, an investigation of the viability
and merits of an implementation of Lagrangian Relaxation in the same circuit
optimization environment are detailed.

Keywords: Circuit optimization, Lagrangian relaxation, optimality condi-
tions.

!The slew of a signal is the rate at which it changes. Some simplified models ignore the impact
of input slew on the delay of a logic gate.



1 Introduction and motivation

The design of modern digital integrated circuits, which contain millions of transistors,
is a complex task. One of the important design steps is circuit tuning or optimization.
In the tuning step, the optimal size of each transistor is determined. Wider transistors
generally lead to faster circuits, but consume more area and place a heavier burden
on the previous stage of logic. Determining the optimal size for each transistor yields
tremendous benefits, but is not an easy proposition.

Optimization of custom circuits is traditionally a manual, iterative, tedious and
error-prone task. In contrast, automatic tuning improves performance and, perhaps
more importantly, increases designer productivity. Circuit optimization is crucial
in maximally exploiting silicon technology and making the right tradeoff choices.
The availability of automated circuit tuning has had a profound impact on design
methodology at IBM.

Ideally, one would be able to consider the entire chip, optimizing for performance,
power, area, noise, layout considerations and other metrics. In practice, this is far too
difficult a task. Therefore, we partition the chip into smaller macros that are tuned
individually at the schematic level but with estimates of area and wire parasitics to
aid the subsequent layout step. The circuit tuning task is then tackled by one of two
complementary approaches, namely static and dynamic tuning.

Static tuning is a method wherein all paths through the circuit are considered
simultaneously and each path is considered to be made up of simplified components
that we might think of as the circuit building blocks or so-called channel connected
components. Static timing analysis estimates the worst-case performance of the cir-
cuit irrespective of the input patterns applied to it. It does this by representing
the circuit by a timing graph with nodes that map the physical circuit nodes and
weighted directed edges that represent the worst-case delays between these nodes.
Static tuning then finds the longest, or “critical” path(s) in the circuit by computing
the graph theoretical delay of the network. These give rises to nonlinear optimization
problems which are so large as to stress even the most advanced optimization pack-
ages. To make things worse, the problems exhibit a large amount of redundancy and
degeneracy. To handle such problems, it is essential to exploit both structure and
optimality conditions. Moreover, additional constraints like timing assertions, area,
input loading, and rise and fall time limits are accommodated to render the tuning
results useful.

By contrast, dynamic tuning inherently implies circuit optimization based on tran-
sient simulation of the underlying circuit. This requires careful and detailed specifi-
cation of the optimization problem, but delivers more general capabilities in return.
In particular, our own work in this area ([7], [8], [10] and [9]) addresses minimax
and power optimization, and simultaneous transistor and wire tuning. Noise con-
siderations, which are typically expressed as semi-infinite constraints, are mapped to
integral equality constraints. This paper focuses on the static tuning approach.



There is a wealth of literature on solving the static optimization problem exactly.
These problems have generally been formulated as nonlinear optimization problems
[1, 2, 3] by introducing variables to represent the latest arrival time of logically correct
signals at each node. Most previous approaches employ an Elmore or suitably chosen
analytic delay model under which the static optimization is provably convex [4], and
therefore any local solution is also a global solution. Unfortunately, for practical high-
performance circuits designed in state-of-the-art technology, the accuracy of Elmore
delay models is inadequate. Furthermore, modeling of slew (rise/fall time) and slew
effects is crucial to maintaining good timing accuracy. Thus although these simplified
delay models are convex, their accuracy is insufficient for production design and the
guarantee of a global solution is essentially spurious.

Static optimization taking slew effects into account and using fast event-driven
simulation for evaluating the timing characteristics of each channel-connected com-
ponent (CCC — the simplified building blocks referred to above) was introduced in
[5]. Unfortunately, such problems have a large number of variables and constraints
even for modest-sized circuits. In addition, the formulation has inherent redundancy
and degeneracy (as observed in [1, 3]), since arrival times and slews of non-critical
signals can settle to one of several equally correct values at the solution. “Pruning”
of arrival time variables [6] helps ameliorate some of the degeneracy and redundancy
problems and significantly decreases the size of the optimization problem.

In this paper, the inherent structure of the static optimization problem is exploited
further to derive optimality conditions on the Lagrange multipliers of both timing
and slew constraints. The optimality conditions are used to effectively and efficiently
solve relatively large static optimization problems. The resulting software has been
used to tune numerous custom and synthesized macros of S/390 and PowerPC high-
performance microprocessor circuits.

This paper includes a study of the use of Lagrangian relaxation. Dual methods
in general and Lagrangian relaxation in particular have been suggested as efficient
methods to solve static optimization problems [1, 3], and are indeed shown to be ex-
tremely efficient in the context of simple Elmore delay models when slews are ignored
[11]. We have implemented Lagrangian relaxation in our more accurate environment
and have found it to be slower than directly solving the primal problem with arrival
time pruning. One potential benefit of Lagrangian relaxation, however, is that it
provides a good lower bound to the solution of the original problem.

Section 2 briefly introduces the formulation of the static optimization problem
whose optimality conditions are derived in Section 3. The exploitation of these op-
timality conditions is described in Section 4 and numerical results are presented in
Section 5. The Lagrangian Relaxation implementation is discussed in Section 6 fol-
lowed by conclusions.



2 Formulation

We assume that the circuit to be tuned consists of combinational parameterized cells,
with one continuous parameter controlling the width of all the PFETSs in the cell and
one controlling those of all the NFETs 2. Working with parameterized cells yields sig-
nificant advantages during synthesis, tuning and automated layout. The formulation
and optimality conditions derived below extend readily to full-custom transistor-level
optimization and simultaneous transistor and wire sizing. The following notation is
used in this paper.

z¥ = N — type transistor widths
2 = P — type transistor widths
T all transistor widths
B = pratios (zF/z")
AT = arrival times
s = slews
PO = set of primary outputs
Pl = set of primary inputs
IN = set of internal nodes
T = set of tunable transistors (1)
G = set of tunable gates

RAT = required arrival times at POs
be fore capturing clock edge?

Atarger = area target

Liorger = input loading limits on Pls
Biower = lower bounds on S ratio
Bupper = upper bounds on [ ratio
Xiower = lower bounds on z

Xupper = upper bounds on z

For the purposes of the description below we will ignore separate rising and falling
arrival times and slews since they clutter the notation. In reality, each arrival time,
slew, arrival time constraint and slew constraint has both a rising and falling version.
Minimization of the cycle time of the circuit subject to area and other constraints
is formulated as shown below. Note that z is an auxiliary variable introduced to
represent the minimum cycle time of the circuit.

2Digital logic typically consists of an NFET “pull-down” tree made of n-type semiconductors
and a complementary PFET “pull-up” tree made of p-type semiconductors. In the methodology
considered herein one continuous parameter controls the width of all PFETS in the cell and one the
NFETS.

3By convention, required arrival times are either expressed before a capturing clock edge or after
a launching clock edge.



min z

x,2,AT, s

s.t. z > AT, + RAT; i€ PO

s.t. AT; > AT, +dij(z,s;) j€ (INUPO),
i € fanin(j)

s.t. s; > sij(z,8) j € (INUPO),
i € fanin(j) (2)

s.t. EieT Azl‘z S Atarget

s.t. ZjGT Lijilij < Ltargeti 1€ PI

s.t. ﬁloweri < -’L'f/l‘iv 1eG

s.t. zl [z < Bupper, ie@

S.t. Xiower < T 1eT

s.1. zi < Xupper ieT.

Ajz; is the contribution of gate ¢ to the total area. L;;z; is the contribution of
transistor j to the loading of primary input ¢. Note that each of the d;; and s;; terms
is a nonlinear function of input slew s;, transistor widths of the relevant CCC and
transistor widths of the fanout CCCs which constitute the loading capacitance. The
implicit assumption is made above that the worst slew is propagated downstream
rather than the slew corresponding to the last-arriving signal (see [5] for details).
Arrival times and slews are variables of the problem. If the user desires, upper bounds
can be placed on the slew variables. Timing and slew constraints are expressed above
by traversing the timing graph. The formulation could easily be revised to minimize
area subject to timing constraints, and all subsequent derivations in this paper would
still be valid with minor changes.

3 Optimality conditions

It is convenient to rewrite the greater-than constraints of (2) as less-than constraints.
By doing so, the Lagrangian of the above problem can be written as

L(x,z, AT, s, \) =

2+ Yicpo Af C(AT; + RAT; — z)

+ X je(INUPO),ic fanin(j) )\%]Z]ng‘lvﬂ +d,j(z, ;) — ATj)

+ Eje(INUPO),iefanin(j) )‘z'j (Sij (z,8:) — Sj)

+/\AREA(ZL:Z'€}D";4]63:Z' - Atarget) (3)
+ ZiEPI )‘z © G(EjET Lijxj - Ltargeti)

+ EiEG )‘iﬂLOWER(BlowemeN - mf)

+XYica )‘?UPPER(%P - ﬂuzlpemsz )

+ EieT /\zXLOWER(Xlowe'r - mz)

+ EiET )‘zXUPPER(xi - Xupper)-
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The first-order optimality conditions are that all the constraints are satisfied, all mul-
tipliers are non-negative (since we are dealing exclusively with less-than constraints),
complimentary slackness is satisfied (for each constraint either the multiplier is zero
or the constraint is tight) and

V.,L = 0

Vil = 0 Vie (INUPO) @
V,L = 0 Vie (INUPO)

VL = 0 VieT.

By taking advantage of (4) above and exploiting the topology of the network,
we obtain the following optimality conditions. Optimal Lagrange multipliers are
indicated by a * superscript. The relations below are obtained by focusing on a single
arrival time or slew variable, writing all the terms of £ in which it occurs, and then
differentiating all such terms with respect to the variable being considered and setting
the sum to zero.

Ziepo /\ZPO* =1
Ekefanin(i) )\ﬁ\l* = Zjefanout(i) )\ZIJN* Vie IN
/\;?o* = Xicfanin(j) )\{QN* Vj € PO

SLEW* __ SLEW* 08;;
Zkefanin(i) Aki - Zje fanout() )‘ij Bs;

* 0d;; .
+ Z:jefanout(i) AZIJN 35,] Vie IN

2

Zkefam'n(i) )\EZLEW* = 0Vie PO.

The optimality conditions on the arrival time constraint multipliers were first used
in [2], but exploitation of the conditions on the slew constraint multipliers is new.
The optimality conditions have several implications. The sum of the “downstream”
arrival time multipliers at each node of the directed timing graph must equal the sum
of the “upstream” multipliers. A similar relation is true for the slew multipliers, but
in terms of the slew sensitivities of all the downstream nonlinear slews and delays.
Note that the sensitivities are known once the simulation of the relevant CCCs has
been completed. Also, a slew or arrival time constraint of a non-critical gate will have
a zero multiplier.

All the multipliers for arrival time and slew constraints can be computed by a
single forward and backward traversal of the timing graph. In the forward traversal,
the arrival times and slews at each node are computed, as in a regular timing analysis.
Downstream slew and arrival time multipliers are maintained for each node. Except
for the downstream arrival time multiplier of the sink node which is initialized to 1.0,
all the rest are initialized to zero. Then a backward traversal of the timing graph



begins. For each node visited, the tight upstream arrival time and slew constraints
are assigned equal multipliers so as to add up to the correct downstream value. As
soon as a multiplier is assigned, that value is added (straightforwardly for arrival time
constraints, and in conjunction with delay and slew sensitivities for slew multiplier
constraints) to the downstream multiplier of the upstream node of each tight con-
straint. Thus locally optimal multipliers are efficiently and easily determined by two
graph traversals. In the case where a single path is critical, the multipliers can be
determined uniquely. When there are multiple equally critical paths, a reasonable
(but not necessarily good) guess for the multipliers is rapidly obtained by the graph
traversal procedure.

4 Implementation details

The ideas of the preceding sections have been incorporated in a software tool called
EinsTuner, which consists of several components.

The timing of each CCC is conducted by using SPECS [12, 13], which is a fast,
transistor-level, event-driven simulator that uses reasonably accurate but simplified
device models. SPECS also provides the gradients of each delay and slew measurement
with respect to input slew, output load and transistor widths by using the adjoint
method of sensitivity computation [14].

To solve the nonlinear optimization problem, LANCELOT [15, 16, 17], a general-
purpose package is employed. LANCELOT uses an augmented Lagrangian merit func-
tion and trust-region approach. It has been customized in several ways to render
circuit tuning more efficient. For example, two-step updating [18], failure recovery
and special considerations for dealing with numerical noise [5] have been implemented.

Pruning is used to reduce the number of arrival time variables and is best illus-
trated by an example. Consider a fragment of a circuit shown in Fig. 1, where the
blocks represent CCCs. The timing constraints in which the arrival time AT; appears
are

ATy > AT + di3
ATy > ATy + dos (6)
AT, > ATz +dss
ATy > AT; + dss.

Slews and separate rising/falling arrival times have been omitted for simplicity. An
equivalent set of constraints is

ATy > AT+ di3+dsy
ATy > ATh + doz + dsy (7)
ATs > AT+ di3 + dss
ATs > AT + doz + dss.
It can be seen that by choosing
AT3 = max(ATl + d13; ATQ + d23), (8)
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Figure 1: Fragment of a circuit.
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Figure 2: Basic graph manipulation.

the set of constraints in (7) is equivalent to the set of constraints in (6). By this simple
manipulation, we went from a situation in which we had 5 arrival time variables and
4 constraints to a new situation with 4 arrival time variables and 4 constraints —
a reduction in the dimensionality of the problem. Of course, each constraint now
has extra terms. In fact, the summations of block delays can be thought of as path
delays. However, the number of CCC simulations is unchanged, and having additional
nonlinear terms in a constraint is not harmful to the optimizer we use since it exploits
group partial separability ([15], page 109) and the overall number of distinct terms
does not increase. For example, even though d;3 appears twice in (7) but only once in
(6), the value, gradient and approximate Hessian are computed only once. Moreover,
the effective dimension of the two subspaces in which we are doing quasi-Newton
updates are unchanged. We observe that pruning in this way is possible only because
the arrival times do not appear nonlinearly in the original constraints. In graphical
terms consider a segment shown on the left side of Fig. 2. The node [ will be pruned.
This node has m fanins (m edges are incident on this node), and n fanouts (n edges
originate at this node). The timing constraints for this graph segment are shown
below.

AT, > ATij-i-dij’l Viel,2,....m (9)

ATy > AT+ dior VE€1,2,...,n.

We now consider eliminating or pruning A7; from the above equations, to obtain

AT, > AT i+ diji+dior Vj€1,2,...,m,

Vke1,2,...,n. (10)

The constraints in the above equation are shown graphically on the right side of



Fig. 2. As before, it can be seen that by choosing
AT, = maX(ATij + dij,l) Viel2,...,m (11)

the “pruned” set of constraints is equivalent to the original set of constraints. Details
are given in [6].

The optimality conditions (5) can easily be rederived taking pruning into account.
The timing arcs incident at each node of the pruned timing graph represent sub-path
delays rather than just the delay through one CCC. Nonetheless, the basic upstream
and downstream conditions hold as in (5).

After the first iteration of LANCELOT, all the multipliers are computed according
to the optimality conditions derived in the previous section. When more than one
upstream constraint is tight, each is given an equal multiplier value so that the total
sums to the required downstream value. Clearly this may not be the optimal choice
but given no further information it seems to be the obvious one. In subsequent
successful iterations of LANCELOT, multipliers that were previously non-zero but
whose corresponding constraints are not tight are reset to zero, and the merit function
of LANCELOT recomputed. Again this seems to be the obvious choice given that
we know that at optimality the multipliers corresponding to constraints that are
not tight must be zero. As the optimization progresses, the non-zero multipliers
increasingly correspond to the critical slew and timing constraints, thereby naturally
guiding the optimizer to focus on the critical sections. At the start of each new
major iteration, provided sufficient feasibility has been obtained, all multipliers are
updated by the usual first-order mechanism of LANCELOT. Because of the nature
of our additional multiplier updates in minor iterations of LANCELOT, after a finite
number of such iterations the multipliers within any major iteration are fixed and the
original convergence theory of LANCELOT applies.

Finally, the tool provides several practical enhancements to users such as a Ca-
dence interface with graphical back-annotation, grouping facilities, tunability com-
mands and support for timing assertions. The graphical interface provides the cir-
cuit designer with a “point-and-click” environment. The back-annotation involves
a “snap-to-grid” to account for the fact that variables such as transistor widths are
discrete (i.e., manufactured at particular sizes) although the optimization treats them
as continuous. The resulting compromise is not significant.

5 Numerical results

The results reported here are those we had in a prototype code that has evolved into
our present tuning tool, EinsTuner, that is continually being upgraded. EinsTuner is
more general in many ways than the prototype (and where relevant we have tried to
indicate this below).

EinsTuner was used to optimize a number of circuits at constant area and constant
input loading. The results are presented in Table 1. “Real” circuits are designated



Table 1: Table of numerical results.
Name # Start | End | % # | CPU

FETs | (ps) | (ps) Its. | (s)
inv3 6 132 122 | 7.6 | 61 5.1
cl7 28 200 | 159 | 20.5 | 20 7.8

ad_3 34 326 | 259 | 20.6 | 41 | 21.5
a_graph 34 302 | 260 | 13.6 | 30 | 38.1
f adder 46 316 | 295 | 6.6 | 41 | 21.5

$390-1 72 278 | 251 | 9.5 | 40 | 87.1
$390-2 102 385 | 324 | 15.7 | 67 | 990.5
$390-3 154 | 1573 | 1553 | 11.1 | 26 | 236.8
ppe-1 824 580 | 511 | 12.0 | 37 | 1818
$390-4 882 311 | 228 | 26.7 | 20 | 532.8
c8 584 740 | 597 | 19.3 | 53 | 1004
ppc-2 880 635 | 500 | 21.2 | 67 | 3687
c432 960 | 1476 | 1281 | 13.2 | 66 | 2768
ppc-3 1554 | 626 | 545 | 12.8 | 32 | 6156
s390-5 | 1400 | 950 | 588 | 38.1 | 42 | 7110
c880 1582 | 1618 | 1418 | 12.4 | 132 | 9225
s390-6 | 1892 | 1445 | 1401 | 12.1 | 47 | 13820
ppc4 | 2726 | 1275 | 1062 | 23.7 | 67 | 53380
cl1355 2180 | 1250 | 1164 | 6.9 | 18 | 2954
c499 2216 | 1272 | 1153 | 9.4 | 38 | 4391
c2670 2796 | 1167 | 1016 | 12.9 | 40 | 8575
¢3540 5164 | 2336 | 2101 | 10.1 | 51 | 12246

with a “ppc” or “s390” prefix to denote macros from PowerPC and S/390 micro-
processors, respectively. The original macro names are not shown for confidentiality
purposes. The remaining benchmarks are “artificial” (e.g., ISCAS-’85 circuits). The
start points on the real designs were provided by the designer, and the circuits had
been hand-tuned to different extents before running EinsTuner. The artificial bench-
marks were sized with a gain-based sizing after library-mapping to obtain a start
point for the optimization. The “start” and “end” columns represent the minimum
cycle time (the variable z of Section 2) before and after tuning. Some of this cycle
time can consist of assertions (arrival times at the inputs and required arrival times at
the outputs), so percentage improvement is computed as the ratio of the improvement
in the cycle time to the pre-tuning critical path delay without any assertion offset.
The sixth column shows the number of optimization iterations required (which is the
same as the number of times the functions need to be evaluated using simulation)
and the last column shows the run time. All tests were run on various models of
IBM Risc/System 6000 workstations by distributing the runs on a pool of heteroge-
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Table 2: Table of high-performance S/390 microprocessor results.

Name # Gain
Gates
1 22 10.4%
2 24 16.6%
3 24 11.6%
4 41 15.2%
5 128 15.9%
6 128 17.1%
7 162 10.0%
8 42 6.0%
9 183 | 18.2%
10 295 | 14.5%
11 317 9.5%
12 487 15.8%
13 487 18.8%

neous machines. Healthy delay improvements averaging 15% are observed, even on
previously tuned circuits, and the run times for circuits up to 5,000 transistors was
manageable (4 hours or less, except for 15 hours in one case). The largest circuit
tuned by the prototype EinsTuner contains about 8,000 transistors and requires 880
MB of memory and a day of CPU time.

In addition to the results in the above table, ten macros and three sub-macros
of the instruction unit of a high-performance S/390 microprocessor were tuned with
EinsTuner. These results are given in Table 2. The macros included several flavors
of 64-bit comparators, 40-bit wide OR, 56-bit incrementer with carry-gating, branch
hit comparison logic, and so on. Most of these circuits were in the 3,000 to 5,000
transistor range. EinsTuner consistently gained 20% or more on the critical path delay
of these circuits, enabling the unit to meet timing requirements. The circuits were
typically first tuned at the schematic level with estimated parasitics, and then again
in extracted mode after the placement and routing. Again gain is defined as cycle
time improvement divided by initial tunable part of the critical path delay without
offset. As before, without offset implies that assertions are discounted in computing
the portion of the delay actually spent in the macro being tuned.

For synthesized random logic macros, latches were cut out by moving assertions
to the inner boundaries of source and sink latches, and modeling the driver and
loading of latches by appropriately sized untunable gates. The resulting combinational
circuits were tuned with EinsTuner. A suite of 10 synthesized macros of a PowerPC
microprocessor was benchmarked with and without taking advantage of the optimality
conditions. The critical path delay was improved on average 15.7% at constant area
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Table 3: Table of results for synthesized macros of a PowerPC microprocessor.

Name # # Gain
Gates | Transistors
1 372 1538 19.2
2 546 2192 14.3
3 314 1247 23.5
4 250 1009 11.4
5 47 174 4.4
6 200 859 15.6
7 94 383 24.8
8 50 194 17.6
9 511 2071 13.6
10 230 912 10.8

and constant input loading. Without taking advantage of optimality conditions, the
quality of the solutions was worse, and the average improvement was only 9.5%. The
consistency and robustness of the software has also improved due to the exploitation
of the optimality conditions. It is important to understand that in the presence of
numerical noise and degeneracy, it is not always possible to solve the optimization
problem as accurately as we would like; taking advantage of the optimality conditions
enables us to converge faster and more effectively. These results are given in Table 3.

6 Lagrangian relaxation

Lagrangian relaxation has been suggested in the electrical engineering literature as an
efficient method of solving the static optimization problem [1, 3, 11]. Mathematically,
it is well known that such an approach depends critically on being able to solve the
inner problem rapidly. We have implemented Lagrangian relaxation in the EinsTuner
environment as an option to test the viability of such an approach. This section
describes the implementation and results.

We consider the first three sets of constraints of (2), i.e., the arrival time and
slew constraints, to be “complicating constraints” and relax them into the objective
function. The area constraint, input loading constraints and simple bounds on the

12



transistor widths are not relaxed. Thus we obtain the following reformulated problem.

max min Lrelaped(T, 2, AT, s, \)
A xz,2,AT, s
s.b. Yier Aiti < Atarget
s.t. ZjET Lz'jﬂjj S Ltargeti 1 € PI (12)
s.t. ﬂloweri < ﬁz 1€G
S.t. /Bz < ﬂuppem 1€G
s.t. Xiower < T; 1€T
s.t. x; < Xupper 1€ T,

where L, ¢qazeq 18 the Lagrangian consisting of the original objective function and the
complicating constraints

Lretaged(t, 2, AT, 8, \) = 2

+ Yicro AL (AT, + RAT; — z)

+ ZjE(INUPO),inanin(j) )\ZI]N(AE + dij(xa Si) - AI})
+ 22 je(INUPO) i€ fanin(j) )‘%LEW(SU (z, 8i) — 85)-

Substituting the optimality conditions A* derived in (5), we get

Lretazed(T, s) = Xicpo A\ O RAT;

+ X je(rNuPO) ic fanin() M. i (T, 51) (14)
+ 2 je(INUPO) i€ fanin(j) )‘z’jLEW* (sij(z, 5i) — 55).

Observe that L, ¢jqzeq is independent of z and the arrival time variables AT [11]. Also,
as optimality is approached, many arrival time and slew multipliers corresponding to
off-critical paths will gravitate towards zero. Thus the inner optimization problem
with the objective function (14) is solved essentially in the transistor width variables, a
subset of the slews, and possibly slack variables introduced by the nonlinear optimizer
for the inequalities that were not relaxed.

Lagrangian relaxation was implemented in EinsTuner, using LANCELOT to solve
the inner minimization problem. The outer maximization was conducted by taking a
subgradient step exactly as suggested in [11]. The step size chosen was k/n where k
is a constant and n the iteration counter. This sequence of step sizes tends to zero as
n goes to co, while the sum of the steps diverges, both requirements for convergence.
Once the multipliers are updated with a subgradient step, they will in general not
satisfy the optimality conditions. However, the smaller inner subproblem assumes
that the multipliers satisfy these conditions. To overcome this difficulty, the results
of the subgradient update are projected onto the nearest point on the hyperplane
representing the optimality conditions, as in [11]. The projection is carried out subject
to simple bounds (e.g., multipliers corresponding to less-than constraints must be
positive). During the projection, in contrast to the method used to update multipliers
in the direct solution of the primal problem, criticality or tightness of constraints is
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Figure 3: Upper and lower bounds plotted against iteration count.

not taken into account to prevent the non-zero multipliers from bouncing around from
one critical path to another.

The choice of step size and projection method are crucial to obtaining an efficient
implementation. For example, if k£ is too large, the multipliers display oscillatory
behavior and converge very slowly.

One well-known and interesting feature of Lagrangian relaxation is that it yields
a lower and upper bound to the original problem solution at each iteration [20]. The
objective function of the relaxed problem when minimized for a given set of multipliers
is a lower bound on the original problem and the objective function of the original
problem an upper bound. Fig. 3 shows a plot of the lower and upper bounds obtained
as a function of iteration count during the optimization of a full adder circuit. The
availability of the bounds gives us an intuitively appealing termination criterion which
is to stop when the lower and upper bounds agree to within a tolerance. In practice,
as we shall see, this criterion is only useful for relatively small problems.

Table 4 shows numerical results comparing EinsTuner with and without Lagrangian
relaxation; “w/o” indicates without, “w/” indicates with Lagrangian relaxation. The
number of iterations without Lagrangian relaxation, outer iterations with Lagrangian
relaxation and total number of inner iterations with Lagrangian relaxation are shown
in the third, fourth and fifth columns, respectively. While the runs were conducted on
various models of IBM Risc/System 6000 workstations, the two runs corresponding
to each benchmark circuit were on the same machine so that CPU times can be
compared. The two versions produced the same solution in all cases. The stopping
criterion was either that the upper and lower bound agreed to within 5 ps, or all the
multipliers converged to within 0.01. Generous tolerances and several schemes were
used to improve the performance of the Lagrangian relaxation algorithm. Despite
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Figure 4: Number of variables versus problem size.

that, as can be seen from the table, Lagrangian relaxation does not yield a CPU
advantage, and in fact the run times rapidly get much worse than solving the original
problem without relaxation. We attribute this lack of improvement to two factors.

e Because of arrival time pruning, the number of variables in the inner problem
is not much smaller than the original problem, so there is not much gain from
the relaxation. In other words, pruning has already gained in a mathematically
appealing fashion much of the dimensionality reduction that the special struc-
ture of the problem (also exploited in the Lagrangian relaxation) offers. Fig. 4
shows the number of variables in the optimization problem with and without La-
grangian relaxation. The difference is marginal. Without arrival time pruning,
however, as the figure shows, the difference would be much greater. Further,
n [11], slews were not considered, so the inner problem only had transistor
width variables, and the inner problem could be solved very efficiently due to
the simple delay modeling. In our context, solving the inner problem is almost
as computationally intensive as solving the original problem; however, it has to
be repeated until the multipliers converge.

e The sub-gradient update of the multipliers in the outer maximization yields at
best linear convergence and thus convergence can be very slow particularly on
large problems. During early iterations, the inner problem is solved crudely to
reduce the computational burden.

We would argue that in spite of the results in [11], a Lagrangian relaxation approach
is essentially undesirable because of the difficulty, alluded to above, of solving the
inner subproblems when more reasonable models than Elmore ones are used. So al-
though it might be preferable to use bundle methods, see for example [19], we have
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Table 4: Numerical results with Lagrangian relaxation.

# Iterations CPU (s)
Name | FETs |[w/o| w/ |w/ X | w/o | w/
inv3 6 61 2 36 5.1 5.3
ad_3 34 41 17 215 21.5 | 138.2

a_graph 34 30 | 28 303 38.1 | 434.7
f_adder 46 41 16 182 21.5 | 1211
$390-1 72 40 | 34 109 87.1 | 479.7
$390-2 102 67 | 61 471 | 990.5 | 8426
$390-3 154 26 | 29 131 || 236.8 | 1502

ppc-1 824 37 | 117 | 1181 | 1818 | 57430

$390-4 882 20 | 156 | 386 || 532.8 | 14553

c8 584 53 | 194 | 1372 || 1004 | 37068

not implemented such an approach. Bundle methods, better step size choices and
better methods of projecting the multipliers on the optimality hyper-plane can be
investigated and may yield improvements, but in our opinion Lagrangian relaxation
is highly unlikely to be superior to solving the pruned primal problem directly. In
conclusion, it would appear that for realistic nonlinear delay models, since the in-
ner iterations are not much cheaper, and the outer iterations converge too slowly,
Lagrangian relaxation is not a useful approach.

7 Conclusions

This paper described the optimal sizing of digital CMOS circuits on a static timing
basis. Optimality conditions were derived which relate Lagrange multipliers corre-
sponding to arrival time and slew constraints. By taking advantage of these relations,
the static optimization problem can be solved efficiently and effectively. Numeri-
cal results on industrial microprocessor circuits up to 5,000 transistors in size were
demonstrated with the prototype. Depending on the quality of the start point, an
improvement of 15% or more was often achieved on previously tuned circuits. Our
current largest benchmark problem has nearly 33,000 variables and more than 28,000
nonlinear constraints. The largest circuit tuned to date by EinsTuner contains 140,109
variables (including slacks) and 110,767 constraints (all but one nonlinear) and 28,907
free variables at the solution. It required 1.4 GB of memory and 4 days, 8 hours of
CPU time. The macro contained 12,167 CCCs and 47,748 transistors.

Lagrangian Relaxation was implemented in this same framework, but in contrast
to previous work with simplified Elmore delay models, was found to be of limited
value. Especially in the presence of arrival time pruning, the inner sub-problem is
not that much smaller than the original optimization problem; however, it has to be
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solved repeatedly until the multipliers corresponding to relaxed constraints converge.
The one benefit of Lagrangian relaxation is that it naturally yields an increasingly
refined estimate of the lower bound of the circuit’s delay as the optimization proceeds.
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