
Abstract

Circuit delay computation taking into account the existence
of false paths represents a significant and computationally com-
plex problem. Existing research work has focused mainly on path
sensitization models and algorithms, and on gate and intercon-
nect delay models. Nevertheless, work in these two main areas
has evolved separately, and so most path sensitization models
and algorithms assume very rudimentary gate and interconnect
delay models. In this paper we propose a modeling framework
for circuit delay computation as a sequence of instances of prop-
ositional satisfiability. This framework is used to capture several
path sensitization models under the unit delay model. Moreover,
several algorithms for propositional satisfiability are evaluated
seeking to illustrate the computational challenges posed by the
circuit delay computation problem. Finally, realistic delay mod-
els taking into account extracted interconnect delays and fanout
data are incorporated into the proposed circuit delay computa-
tion framework in order to experimentally evaluate its applica-
bility.

1 Intr oduction

Recent years have seen an ever increasing need for more
accurate delay estimation methodologies in digital circuits, in
particular due to the decisive role that delay estimation plays in
determining limiting operating clock frequencies. A key problem
associated with circuit delay estimation is the existence of false
paths, which cause straightforward and efficient topological path
analysis procedures to yield potentially conservative delay esti-
mates. In contrast with topological delay estimation, solving the
false path problem is computationally hard, being an NP-com-
plete problem [15]. Research work on false paths has been exten-
sive and, among others, several promising modeling and
algorithmic approaches have been proposed [1, 2, 6, 9, 15, 15,
18, 22]. Despite this research effort, we believe that a compre-
hensive and unified computational study of different models and
algorithms for solving the false path problem is still missing. In
this paper we propose to partially solve this problem by studying
a set of path sensitization criteria, under the assumption of float-
ing mode circuit operation. This work is undertaken within a uni-
fied framework for solving the false path problem, which is
based on propositional satisfiability models and algorithms. Fur-
thermore, we explore more realistic delay modeling within the
proposed framework, thus evaluating how SAT-based circuit
delay computation is dependent upon the delay model consid-
ered. The computational study described in this paper is neces-
sarily incomplete, since several relevant models and algorithms
are not covered. Nevertheless, this study proposes an experimen-
tal procedure which can be generalized for those other models.
Furthermore, we note that false paths can exist in both combina-
tional and sequential circuits, even though in this paper we will
exclusively consider combinational false paths.

The organization of the paper is as follows. We start with a
few brief definitions, and then describe how to capture path sen-
sitization using propositional satisfiability models. This section
follows closely the work of [16], but a significantly simpler

approach is used to derive the SAT models for the viability path
sensitization criterion [15]. In addition, the SAT modeling
approach of [16] is shown to be easily extended to other floating
mode path sensitization criteria, namely static sensitization [5]
and exact floating-mode sensitization [6]. Afterwards, in Section
4, the experimental procedure is described and experimental
results are analyzed. Conclusions resulting from the proposed
analysis are given in Section 5.

2 Definitions

In the following we shall assume a combinational circuitM,
with PI primary inputs,PO primary outputs, composed of simple
gates (AND, NAND, OR, NOR, NOT), where for a circuit node
f, c(f) denotes the controlling logic value off andnc(f) denotes
the non-controlling logic value off. For each circuit nodef, FI(f)
denotes the fanin nodes off andFO(f) denotes the fanout nodes
of f. The delay between the fanin nodeg of a circuit nodef andf
is denoted byd(g,f). A complete path (or simply a path) in a cir-
cuit is a sequence of nodes connecting a primary input to a pri-
mary output. Apartial path denotes a connected sequence of
nodes within a path.

The circuit delay computation problem consists of identify-
ing thelargest path delay value in a given circuit along which a
signal transition is able to propagate from the primary input to
the primary output of the path, under a chosen propagation model
and for some primary input vector.

3 Path Sensitization Conditions

The conditions under which signals propagate from the pri-
mary inputs to the primary outputs in a combinational circuit are
generally referred to as path sensitization conditions. Path sensi-
tization conditions depend on the model of operation assumed
for the circuit, in particular the different forms of stimuli on the
primary inputs, and the waveform model assumed at each node
in the circuit. Even though detailed and precise models can be
considered, we shall restrict ourselves to floating mode opera-
tion, under which all nodes are assumed to undergo a single
known transition, from an initial unknown value to a finalstable
known value. Most criteria defined under floating mode opera-
tion are conservative (e.g. viability [15] and theexact criterion
under floating mode operation [6]), thus overestimating the cir-
cuit delay in some situations. Nevertheless, as shown in [15], via-
bility and floating mode sensitization arerobust, thus providing
upper bounds on the circuit delay under the bounded gate delay
model (i.e. assuming that each gate delay is within some interval
[0, dmax]).

A characterization of different sensitization criteria for
floating-mode operation for simple gates, under the assumption
of single path sensitization, is illustrated in Figure 1, and identi-
fies logical and temporal constraints on the side inputs to each
nodex in a path.τ(x) denotes the propagation delay of a signal
transition to nodex along a given path. The side inputs values
can either becontrolling (c) or non-controlling (nc). SymbolC
indicates that a given circuit node value is unknown and may
experience changes in time. For static sensitization, the side

Realistic Delay Modeling in Satisfiability-Based Timing Analysis

Luís Guerra e Silva, João P. Marques Silva, Luís Miguel Silveira and Karem A. Sakallah*

Cadence European Laboratories/INESC
Instituto Superior Técnico

R. Alves Redol, 9
1000 Lisboa, Portugal

*Electrical Engineering and Computer Science Dept.
Advanced Computer Architecture Lab.

University of Michigan
Ann Arbor, MI 48109-2122

inputs are required to assume non-controlling values for propa-
gation of a signal transition to occur. For viability, the side inputs
are required to either be non-controlling or stabilize later that the
node on the path. Finally, for floating-mode operation, it is
assumed that the initial value of each primary input is unknown
and changes to a known logic value at the specified arrival time.
In the floating-mode sensitization criterion, a nodey in the fanout
of a nodex stabilizes as a direct consequence of nodex stabiliz-
ing if x is either theearliest controlling value to stabilize or all
fanin nodes assume non-controlling values andx is the latest
node to stabilize.

3.1 Satisfiability Models for Path Sensitization

In this section we show how to capture different path sensi-
tization conditions using satisfiability models. Basically, the
objective is to define conditions under which a given circuit node
can stabilize at a given time instant.
Definition 1. We define the Boolean function such that

 if and only if circuit nodef stabilizes at a time
greater than or equal tot when input vectorc is applied to the pri-
mary inputs.

Clearly the definition of leads naturally to the fol-
lowing observations.
Lemma 1.For a given input vectorc and a circuit nodef, the fol-
lowing conditions must hold:

1. for all .
2. for all .

Moreover, for a given circuit delay∆, and considering the
set of primary outputsPO, we have the condition,

(1)

for some input vectorc. This condition must be satisfiable to
ensure that at least one path with delay∆ is sensitizable under the
path sensitization model assumed. Furthermore, the definition of
function will dif fer for different sensitization conditions,
as we will see in the following sections.

3.2 Viability

Given the interpretation of viability for simple gates in Fig-
ure 1-(b) and considering the generalization for multiple paths
with the same delay values, we have the following conditions for
a given circuit nodef to stabilize at a time no earlier than a given
delayt for some input vectorc:
1. At least one fanin nodeg of f, with delay betweeng

andf, must stabilize at a time no earlier than . (This
condition permits the existence of multiply sensitized partial

nc
nc

nc

side

Xnodex

of x

inputs

C

nc

nc

τ(x)

C

C

C

cC

(b) Viability(a) Static

(c) Floating Mode

τ(x)

nc

nc

C

C

c

nc

nc

τ(x)

C

C

C

cC

Figure 1:A characterization of path sensitization criteria

τ(x)

χf t, c()
χf t, c() 1=

χf t, c()

χf t, c() 1=() χf τ, c() 1=()⇒ τ t≤
χf t, c() 0=() χf τ, c() 0=()⇒ τ t≥

χg ∆, c()
g PO∈
∑ 1=

χf t, c()

d g f,()
t d g f,()–

paths.)
2. Furthermore, either a fanin node assumes a non-controlling

value or it stabilizes at a time no earlier than , thus
being passive regarding propagating a signal transition fromg
to f. Formally, we have,

(2)

which is basically equivalent to the viability condition proposed
in [16]. Furthermore, observe that each function can be
viewed as a node in a combinational circuit. Given T. Larrabee’s
well-known mapping [14] from circuits into CNF formulas and
from condition (1) it is straightforward to generate a CNF for-
mula for capturing the sensitization conditions for all paths with
delay no smaller than a given threshold delay∆. It can easily be
concluded that the CNF formula size is polynomial in the num-
ber of functions considered.

3.3 Static Sensitization

For static path sensitization, using the model illustrated in
Figure 1-(a), and again taking into account that multiple signal
transitions can propagate from the fanin nodes to a given nodef,
we get the following definition of :

(3)

which basically requires that at least one fanin nodeg of f to sta-
bilize no earlier than and such that the remaining
fanin nodes assume non-controlling values. Clearly this condi-
tion must hold for any of the fanin nodes. Moreover, and as with
viability, creating the CNF formula for static sensitization
becomes immediate by using conditions (1) and (3).

3.4 Floating Mode Sensitization

In order to capture the exact path sensitization model under
the floating mode of operation [6], the following observations are
useful:
1. If the fanin node in any path being studied assumes a

controlling value, then the floating mode condition is
equivalent to viability.

2. Otherwise, all input nodes must be non-controlling. In this
situation, propagation from any potential fanin nodeg only
requires that a transition reaches that node, i.e.

 and that all other inputs assume non-
controlling values.

These observations lead to the following definition of
:

(4)

Observe that since a fanin node is required to satisfy
, then at least one of these nodes will guaran-

tee provided all inputs assume non-controlling val-
ues.

4 Experimental Results

The circuit delay computation algorithm consists solely of
iteratively generating and solving instances of SAT for decreas-
ing circuit delays starting from the largest topological path delay

t d g f,()–

χf t, c() χg t d g f,()–, c()
g FI f()∈
∑ ⋅=

χh t d h f,()–, c() h nc f()=()+()
h FI f()∈
∏⋅

χf t, c()

χf t, c()

χf t, c()

χf t, c() χg t d g f,()–, c() h nc f()=()
h FI f() g{ }–∈

∏⋅

g FI f()∈
∑=

t d g f,()–

χg t d g f,()–, c() 1=

χf t, c()

χf t, c() χg t d g f,()–, c()
g FI f()∈
∑ ⋅=

g c f()=() χh t d h f,()–, c() h nc f()=()+()
h FI f()∈
∏⋅

 +

h nc f()=()
h FI f()∈
∏+

χg t d g f,()–, c() 1=
χf t, c() 1=

and until a satisfiable instance of SAT is found, which corre-
sponds to the circuit delay. All the satisfiability models described
in the previous sections have been implemented and used for
generating a large number of instances of SAT, each of which
denotes the sensitization conditions for a given target circuit
delay for a chosen circuit. In this section we provide results of a
large number of satisfiability algorithms [3, 4, 7, 10-13, 19, 21]1

on these instances of SAT. For the results shown in Table 2 a
SUN Sparc 5/85 machine, with 64 MByte of physical memory,
was used. Furthermore, we also study the effects on computed
circuit delay and algorithm execution time when a more realistic
delay model is used. The results of this study are presented in
Table3 and were obtained on a SUN UltraSparc 1 with 384
MByte of physical memory.

4.1 Statistics for the Benchmark Circuits

One potential problem of SAT-based circuit delay computa-
tion algorithms is the size of the CNF formulas. In Table1, we
provide statistics for the different benchmark circuits, under the
unit gate delay model. LTP denotes the largest topological path
delay and∆ denotes the circuit delay under the viability and
floating-mode path sensitization criteria. For the most significant
path sensitization criteria, i.e. viability and floating-mode,
Table1 includes the largest number of clauses for any given iter-
ation of the algorithm, as well as the number of variables in that
situation. The number of iterations until a sensitizable path delay
is found is also included. As can be concluded, the worst-case
number of clauses is reasonable, given the original circuit sizes.

4.2 Results for Viability

The results for viability are shown in Table2. (A more com-
prehensive set of results, involving other criteria can be found in
[20].) Entries with a ‘*’ indicate that the respective algorithm did
not finish in less than 3,000 CPU seconds. It is interesting to
observe that the vast majority of the generated instances of SAT
are extremely easy to solve with most SAT algorithms. The
exceptions to this rule are the less sophisticated SAT algorithms,
in particular the Davis-Putnam procedure, which is unable to
solve a large number of benchmarks. On the other hand, for a
few benchmarks, only a few SAT algorithms are able to compute
the circuit delay in a reasonable amount of time. In general,
GRASP and rel_sat are by far the most efficient algorithms for
solving this class of instances of SAT. Finally, we observe that

1. A description of SAT algorithms and an evaluation of their
use for solving the circuit delay computation problem is given
in [20].

Cir cuit [18] LTP ∆ Iterations
Viability Floating-Mode

Clauses Variables Clauses Variables

C432 17 17 1 942 330 1335 450
C499 11 11 1 585 226 661 247
C880 24 24 1 627 242 932 341
C1355 24 24 1 2053 704 3029 1025
C1908 40 37 7 5755 1932 8962 2936
C2670 32 30 5 6559 2255 10132 3402
C3540 47 46 3 5732 2027 7318 2532
C5315 49 47 5 5401 1887 8085 2773
C6288 124 123 2 13244 4239 19299 6257
C7552 43 42 3 2180 760 3386 1158
CBP.12.2 40 23 77 2081 707 3757 1261
CBP.16.4 44 27 89 1698 592 2957 1009
CLA.16 34 34 1 479 183 812 294
TAU92EX1 27 24 31 1213 450 2026 711
MULT-CSA 78 78 1 11415 3496 12309 3982

Table 1:Statistics for the benchmark circuits for a few benchmarks and for viability using TEGUS we have
been unable to reproduce the results of [16]. One possible justifi-
cation is that the CNF formulas used in this paper and in [16] are
necessarily different. Furthermore, the version of TEGUS used in
[16] may have been optimized for the circuit delay computation
problem, whereas the results of TEGUS included in the paper are
obtained with the version that is available in SIS [21].

4.3 Realistic Delay Modeling

The previous results were obtained assuming a unit delay
model for each gate. However, in general we need to consider
more realistic delay models which should take into account the
following constraints:
1. Dif ferent delay values for different types of gates.
2. Variation of delay with the number of fanouts/fanins.
3. Interconnect delay estimation (for circuits for which layout

information is available).
Gate delays and delay variation with the number of fanouts/

fanins can be easily modeled using information available from an
IC library databook. Interconnect delay, however is hard to esti-
mate for the benchmark circuits available, which are only
described at the gate level. To obtain this information the bench-
mark circuits were mapped using the standard-cell library
ECPD07 (ES2/Atmel)2 [11], and the parasitic capacitances of the
interconnect were extracted. For each gate, the (load-dependent)
propagation delay () is given by:

(5)

where is the intrinsic propagation delay, is the differen-
tial (load-dependent) propagation delay and is the load
capacitance at the gate output. Further, this load capacitance is
given by:

(6)

where is the lumped interconnect capacitance and is
the sum of the input capacitances of all the fanouts. The intercon-
nect resistance for this technology is very small, resulting in a
negligible interconnect delay that has been discarded. However
the interconnect capacitance is significant and was used to more
realistically model the load-dependent propagation delay of each
gate. We further note that all delays were computed with two-
digit precision. Clearly, this gate delay model leads to a signifi-
cantly larger number of path delays, which increases the number
of iterations of the circuit delay computation algorithm.

2. Mapping to this library requires that each gate with more than
4 inputs has to be expanded into a sequence of gates each with
no more than 4 inputs.

Cir cuit LTP/∆ grasp rel_sat posit tegus h2r csat dpl

C432 17/17 0.03 0.03 0.02 0.13 0.18 0.10 0.45
C499 11/11 0.02 0.22 0.01 0.11 518.08 68.60 0.17
C880 24/24 0.04 0.02 0.01 0.11 0.08 0.10 0.15
C1355 24/24 0.12 0.09 0.19 0.32 2.27 0.50 *
C1908 40/37 0.26 1.43 0.48 3.29 4.37 5.40 107.37
C2670 32/30 2.83 3.21 * * * * *
C3540 47/46 0.54 0.29 0.69 4.72 2.81 3.10 519.63
C5315 49/47 1.27 0.54 1.03 * 6.44 5.90 *
C6288 124/123 11.19 42.79 * 86.73 206.50 203.90 *
C7552 43/42 0.17 0.44 0.05 1.02 0.63 0.80 3.27
CBP.12.2 40/23 1.53 5.63 0.73 23.95 17.67 15.401228.67
CBP.16.4 44/27 1.03 6.66 0.56 16.40 16.53 17.70 310.65
CLA.16 34/34 0.04 0.02 0.00 0.07 0.05 0.00 0.03
TAU92EX1 27/24 0.63 2.73 0.06 5.73 2.65 1.90 13.27
MULT-CSA 78/78 5.90 13.89 4.43 518.06 88.83 21.80 *

Table 2:CPU times for viability

tp
tp tpi

dtp Cl⋅+=

tpi
dtp

Cl

Cl Ci C∑ g+=

Ci
Cg∑

In Table3 we present the CPU times for checking satisfi-
ability for different SAT algorithms, obtained on the technology
mapped circuits assuming both a unit delay model and a realistic
delay model. For this experiment the path sensitization criterion
used was viability. In the column for rel_sat, entries with “#V”
indicate that the maximum number of variables (23,000) was
exceeded. In the column for TEGUS, entries with “#B” indicate
that the maximum number of backtracks was exceeded. As can
be observed, the CPU times increase significantly because the
number of iterations of the algorithm also increases accordingly.
However, this added complexity signifies that we are now able to
obtain much more accurate delay estimates for the circuit delay.

5 Conclusions

In this paper we propose a unified propositional satisfiabil-
ity modeling and algorithmic framework for studying circuit
delay computation methodologies. Different path sensitization
models were considered and reasonably efficient results were
obtained. Regarding the SAT algorithms used, one class of algo-
rithms provides by far the most efficient and robust results. Both
algorithms in this class (GRASP and rel_sat) use a number of
search pruning techniques, which are shown to be particularly
effective for solving circuit delay computation problems. More-
over, more realistic delay models, which take into account
extracted interconnect delays and fanout data, were incorporated
into the proposed modeling and algorithmic framework. Prelimi-
nary results suggest that the approach is still feasible, though
necessarily more inefficient.

Additional work involves concluding the experiments
described in this paper, as well as experimenting with a larger
number of benchmarks. Another experiment that will be useful in
identifying which SAT algorithms can actually be used in prac-
tice for circuit delay computation is to study families of circuits,
for which we can increase the problem complexity by selecting
larger members of that family. A well-known example is the
family of carry-skip adders [15], where measures of size/com-
plexity include the number of bits in the adder as well as the
number of bits per block. Furthermore, additional experiments
ought to include more detailed gate delay models with the goal of
evaluating how large the CNF formulas can become, and how the
different SAT algorithms handle larger CNF formulas, with more
path sensitization options.

Cir cuit
Unit Delay Realistic Delay

LTP/∆ grasp rel_sat tegus LTP/∆ grasp rel_sat tegus

C432 20/20 0.02 0.02 0.04 20.20/19.90 1.26 0.75 25.31
C499 12/12 0.01 0.11 0.03 16.67/16.64 0.01 0.24 0.03
C880 24/24 0.02 0.01 0.02 18.59/18.59 0.01 0.01 0.03
C1355 25/25 0.06 0.04 0.08 22.38/21.97 0.21 3.87 2.33
C1908 42/39 0.17 0.95 0.91 32.44/29.68 75.35 #V 427.57
C2670 34/32 0.63 0.53 8.62 40.31/38.62 65.95 155.06 #B
C3540 47/46 0.33 0.15 6.07 45.19/43.101994.69 #V #B
C5315 49/47 0.57 0.30 7.12 58.57/57.36 4.36 2.34 113.97
C6288 124/123 6.64 28.60 5.40 73.82/73.064672.90 #V #B
C7552 43/42 0.11 0.28 0.26 38.57/36.39 142.44 50.85285.34
CSA.16.4 41/22 0.08 11.25 2.27 36.00/20.10 0.36 24.92 14.16
CBP.12.2 40/23 0.71 3.29 7.72 22.65/13.94 25.10 67.45301.74
CBP.16.4 44/27 0.44 15.20 7.05 25.84/16.52 4.31 39.29 70.74
CLA.16 34/34 0.02 0.00 0.01 21.68/21.65 0.08 0.25 0.20
MULT-CSA 78/78 3.35 3.35 4.82 81.10/80.873277.26 #V #B

Table 3:CPU times for unit vs. realistic delay models, using viability

References

[1] P. Ashar, S. Malik and S. Rothweiler, “Functional Timing Analysis
using ATPG,” in Proceedings of the European Design Automation
Conference, 1993.

[2] R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii, A.
Pardo and F. Somenzi, “Algebraic Decision Diagrams and Their
Applications,” in Proceedings of the International Conference on
Computer-Aided Design, November 1993.

[3] P. Barth, “A Davis-Putnam Based Enumeration Algorithm for Lin-
ear Pseudo-Boolean Optimization,” Technical Report MPI-I-95-2-
003, Max-Planck-Institut für Informatik, January 1995.

[4] R. Bayardo Jr. and R. Schrag, “Using CSP Look-Back Techniques
to Solve Real-World SAT Instances,” in Proceedings of the
National Conference on Artificial Intelligence (AAAI-97), 1997.

[5] J. Benkoski, E. Vanden Meersch, L. Claesen and H. De Man, “Effi-
cient Algorithms for Solving the False Path Problem in Timing Ver-
ification,” in Proceedings of International Conference on
Computer-Aided Design, pp. 44-47, 1987.

[6] H.-C. Chen and D. H. Du, “Path Sensitization in Critical Path Prob-
lem,” IEEE Transactions on Computer-Aided Design, vol. 12, no.
2, pp. 196-207, February 1993.

[7] J. Crawford and L. Auton, “Experimental Results on the Cross-
Over Point in Satisfiability Problems,” inProceedings of the 11th
National Conference on Artificial Intelligence (AAAI-93), pp. 22-
28, 1993.

[8] M. Davis and H. Putnam, “A Computing Procedure for Quantifica-
tion Theory,” Journal of the Association for Computing Machinery,
vol. 7, pp. 201-215, 1960.

[9] S. Devadas, K. Keutzer and S. Malik, “Computation of Floating-
Mode Delay in Combinational Circuits: Practice and Implementa-
tion,” IEEE Transactions on Computer-Aided Design, vol. 12, no.
12, pp. 1924-1936, December 1993.

[10] O. Dubois, P. Andre, Y. Boufkhad and J. Carlier, “SAT versus
UNSAT,” Second DIMACS Implementation Challenge, David S.
Johnson and Michael A. Trick (eds.), DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, 1993.

[11] ES2 ECPD07 Library Databook, July 1995.
[12] J. W. Freeman,Improvements to Propositional Satisfiability Search

Algorithms, Ph.D. Dissertation, Department of Computer and Infor-
mation Science, University of Pennsylvania, May 1995.

[13] D. S. Johnson and M. A. Trick (eds.),Second DIMACS Implemen-
tation Challenge, DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, 1993. DIMACS benchmarks avail-
able in ftp://Dimacs.Rutgers.EDU/pub/challenge/sat/benchmarks/
cnf.

[14] T. Larrabee,Efficient Generation of Test Patterns Using Boolean
Satisfiability, Ph.D. Dissertation, Department of Computer Science,
Stanford University, STAN-CS-90-1302, February 1990.

[15] P. C. McGeer and R. K. Brayton,Integrating Functional and Tem-
poral Domains in Logic Design: The False Path Problem and its
Implications, Kluwer Academic Publishers, 1991.

[16] P. McGeer, A. Saldanha, P. R. Stephan, R. K. Brayton and A. L.
Sangiovanni-Vincentelli, “Timing Analysis and Delay-Test Genera-
tion Using Path Recursive Functions,” inProceedings of the Inter-
national Conference on Computer-Aided Design, November 1991.

[17] P. McGeer, A. Saldanha, R. K. Brayton and A. L. Sangiovanni-Vin-
centelli, “Delay Models and Exact Timing Analysis,” inLogic Syn-
thesis and Optimization, T. Sasao (Ed.), 1993.

[18] J. P. M. Silva and K. A. Sakallah, “Efficient and Robust Test-Gener-
ation Based Timing Analysis,” inProceedings of the International
Symposium on Circuits and Systems, pp. 303-306, 1994.

[19] J. P. M. Silva and K. A. Sakallah, “GRASP—A New Search Algo-
rithm for Satisfiability,” in Proceedings of the International Confer-
ence on Computer-Aided Design, November 1996.

[20] L. G. Silva, J. P. M. Silva, L. M. Silveira and K. A. Sakallah, “Satis-
fiability Models and Algorithms for Circuit Delay Computation,” in
the ACM Workshop on Timing Issues in the Specification and Syn-
thesis of Digital Systems (TAU), December 1997.

[21] P. R. Stephan, R. K. Brayton and A. L. Sangiovanni-Vincentelli,
“Combinational Test Generation Using Satisfiability,” Memoran-
dum no. UCB/ERL M92/112, Department of Electrical Engineering
and Computer Sciences, University of California at Berkeley, Octo-
ber 1992.

[22] H. Yalcin and J. P. Hayes, “Hierarchical Timing Analysis Using
Conditional Delays,” inProceedings of the International Confer-
ence on Computer-Aided Design, November 1995.

